Set characterization-selection towards classification based on interaction index
نویسندگان
چکیده
منابع مشابه
Set characterization-selection towards classification based on interaction index
In many real world datasets both the individual and coordinated action of features may be relevant for class identification. In this paper, a computational strategy for relevant feature selection based on the characterization of redundant or complementary features is proposed. The characterization is achieved using fuzzy measures and an interaction index computed from fuzzy measure coefficients...
متن کاملA Selection Algorithm of Training Set Based on Similar Classification
License Plate Recognition (LPR) combines computer vision technology and pattern recognition technology and plays an important role in Freeway Toll System, Urban Road Monitoring System and the Intelligent Parking Lot Management System. Therefore, it has attracted an ever increasing number of scholars from home and abroad. Despite many years of unremitting effort which has resulted in breakthroug...
متن کاملA research on classification performance of fuzzy classifiers based on fuzzy set theory
Due to the complexities of objects and the vagueness of the human mind, it has attracted considerable attention from researchers studying fuzzy classification algorithms. In this paper, we propose a concept of fuzzy relative entropy to measure the divergence between two fuzzy sets. Applying fuzzy relative entropy, we prove the conclusion that patterns with high fuzziness are close to the classi...
متن کاملRough Set Feature Selection Algorithms for Textual Case-Based Classification
Feature selection algorithms can reduce the high dimensionality of textual cases and increase case-based task performance. However, conventional algorithms (e.g., information gain) are computationally expensive. We previously showed that, on one dataset, a rough set feature selection algorithm can reduce computational complexity without sacrificing task performance. Here we test the generality ...
متن کاملSentiment Classification using Rough Set based Hybrid Feature Selection
Sentiment analysis means to extract opinion of users from review documents. Sentiment classification using Machine Learning (ML) methods faces the problem of high dimensionality of feature vector. Therefore, a feature selection method is required to eliminate the irrelevant and noisy features from the feature vector for efficient working of ML algorithms. Rough Set Theory based feature selectio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fuzzy Sets and Systems
سال: 2015
ISSN: 0165-0114
DOI: 10.1016/j.fss.2014.09.015